VECTOR ADDITION

WE ARE GOING TO EXAMINE SEVERAL DIFFERENT METHODS FOR ADDING VECTORS. EACH OF THEM IS A TOOL FOR YOUR STATICS TOOLBOX, AND YOU SHOULD LEARN HOW AND WHEN TO USE EACH OF THEM.

ALL METHODS OF VECTOR ADDITION ARE ULTIMATELY BASED ON THE TIP-TO-TAIL TECHNIQUE PRESENTED IN THE SECTION ON 1-DIMENSIONAL VECTORS. THERE ARE TWO VISUAL METHODS TO ADD 2-D AND 3-D VECTORS:

 $\vec{R} = \vec{A} + \vec{B}$

TRIANGLE RULE

PLACE THE TAIL OF B AT THE TIP OF A DRAW THE RESULTANT R FROM THE TAIL OF A TO THE TIP OF B.

PARALLELOGRAM RULE

PLACE BOTH VECTOR'S TAILS AT
THE SAME POINT. COMPLETE THE
OTHER TWO SIDES OF THE PARALLELOGRAM,
AND THEN DRAW R FROM THE TAILS
OF A AND B TO THE OPPOSITE CORNER
OF THE PARALLELOGRAM.

IF YOU CAREFULLY DRAW THE VECTORS TO SCALE WITH A RULER & PROTRACTOR, YOU CAN USE THE TRIANGLE METHOD OR THE PARALLELOGRAM METHOD TO GET A REASONABLY ACCURATE ESTIMATE OF R (IN 2-DIMENSIONS).

CAD PROGRAMS CAN ALSO DO THIS FOR YOU.

ANOTHER (USUALLY QUICKER) METHOD IS TO USE TRIGONOMETRY BY:

- 1 DRAWING A QUICK DIAGRAM (TRIANGLE OR PARALLELOGRAM)
- 2 IDENTIFYING 3 KNOWN SIDES OR ANGLES
- 3. USING TRIG TO SOLVE FOR UNKNOWN SIDES OR ANGLES

TRIG. REVIEW

FOR ANY OBLIQUE TRIANGLE, WE CAN USE THE LAW OF SINES AND THE LAW OF COSINES TO SOLVE FOR UNKNOWN SIDE LENGTHS & ANGLES.

THE LAW OF SINES STATES:

$$\frac{\sin a}{A} = \frac{\sin b}{B} = \frac{\sin c}{C}$$

THE LAW OF COSINES STATES:
$$A^2 = B^2 + C^2 - 2BC \cos \alpha$$

 $B^2 = C^2 + A^2 - 2CA \cosh C^2 = A^2 + B^2 - 2AB \cosh C$

THE METHODS PRESENTED THUS FAR ARE POWERFUL, BUT LIMITED. TO NAME A FEW OF THE LIMITATIONS:

- . WE CAN ONLY ADD TWO VECTORS AT A TIME, IF WE NEED TO ADD 3 OR MORE VECTORS, WE HAVE TO FIRST ADD TWO, THEN ADD A THIRD TO THE RESULTANT OF THE FIRST TWO, AND SO ON.
- · IF WE MISLABEL OR MISIDENTIFY THE VECTORS, WE MAY GET AN INCORRECT ANSWER.
- . THE LAW OF SINES AND THE LAW OF COSINES WORK WITH SCALARS WE CAN USE THOSE SCALARS TO CONSTRUCT A VECTOR, BUT WE ARE NOT DIRECTLY WORKING WITH VECTORS.

THE ALGEBRAIC METHOD IS MUCH BETTER SUITED TO ADDING 3 OR MORE VECTORS. BEFORE WE CAN USE IT, HOWEVER, WE NEED TO LEARN ABOUT VECTOR RESOLUTION.

THE PROCESS OF FINDING COMPONENTS OF A VECTOR IN PARTICULAR DIRECTIONS IS CALLED VECTOR RESOLUTION. IT IS SIMILAR TO THE PARALLELOGRAM RULE, BUT REVERSED.

GIVEN A 2-D VECTOR F, WE CAN RESOLVE IT INTO 2 COMPONENT VECTORS, WHICH ARE THE SIDES OF A PARALLELDGRAM WITH F AS THE DIAGONAL WE CAN PICK ANY TWO PIRECTIONS FOR THE SIDES, BUT IT'S VERY USEFUL TO CHOOSE ORTHOGONAL (PERPENDICULAR) DIRECTIONS, THIS RESOLVES THE VECTOR F INTO RECTANGULAR COMPONENTS.

BECAUSE THE RECTANGULAR COMPONENTS FORM RIGHT TRIANGLES WITH F, WE CAN FIND THEIR MAGNITUDES USING:

$$F_x = F\cos\theta$$
 $F_y = F\sin\theta$

INSTEAD OF AN ANGLE D, YOU MAY BE GIVEN A SMALL "SLOPE" TRIANGLE. IN THIS CASE, YOU CAN USE THE RULE OF SIMILAR TRIANGLES TO FIND THE RECTANGULAR COMPONENTS OF A VECTOR

NOW, TO USE THE ALGEBRAIC METHOD TO ADD VECTORS TOGETHER, WE NEED TO DO 2 THINGS:

- 1. RESOLVE EACH VECTOR INTO ITS CARTESIAN COORDINATES $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$
- 2. ALGEBRAICALLY SUM THE SCALAR COMPONENTS IN EACH COORDINATE DIRECTION.

$$\overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B} = (A_x + B_y) \hat{i} + (A_y + B_y) \hat{j} + (A_z + B_z) \hat{k}$$

AS WITH 1-DIMENSIONAL VECTORS, THE EASIEST WAY TO SUBTRACT A VECTOR FROM ANOTHER VECTOR IS TO MULTIPLY THE VECTOR YOU WANT TO SUBTRACT BY -1, AND THEN APD THE TWO VECTORS TOGETHER USING ONE OF THE METHODS DESCRIBED ABOVE.

$$\vec{A} - \vec{B} = \vec{A} + (-1)\vec{B}$$

DOT PRODUCT

UNLIKE SCALAR ALGEBRA, WHERE THERE IS ONLY ONE WAY TO MULTIPLY NUMBERS TOGETHER, THERE ARE TWO WAYS WE CAN MULTIPLY VECTORS:
THE DOT PRODUCT AND THE CROSS PRODUCT.

TO CALCULATE THE DOT PRODUCT OF TWO VECTORS = Ax1+Ay1+Ay1+Ax AND B=Bx1+By1+Bx1, sum the products of the Components:

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

ALTERNATIVELY (AND EQUIVALENTLY), USE THE ANGLE O BETWEEN THE TWO VECTORS TO CALCULATE THE DOT PRODUCT:

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta = AB \cos \theta$$

FROM THIS FORM OF THE DOT PRODUCT, WE CAN SEE THAT THE DOT PRODUCT OF TWO PERPENDICULAR VECTORS (0=90°) IS ZERO (cos90°=0).

WHEN DOTTING THE CARTESIAN UNIT VECTORS (1,3,8k), WE HAVE THE FOLLOWING:

$$\hat{1} \cdot \hat{1} = 1$$
 $\hat{1} \cdot \hat{1} = 0$ $\hat{1} = 0$ $\hat{1} \cdot \hat{1} = 0$ $\hat{1} \cdot \hat{1} = 0$ $\hat{1} \cdot \hat{1} = 0$

WANT PROOF? WE CAN USE REGULAR MULTIPLICATION TO PROVE OUR FIRST EQUATION FOR THE DOT PRODUCT: $\overrightarrow{A} \cdot \overrightarrow{B} = (A_x \hat{1} + A_y \hat{1} + A_z \hat{k})(B_x \hat{1} + B_y \hat{1} + B_z \hat{k})$ $= A_x B_x \hat{1} \hat{1} + A_x B_y \hat{1} + A_x B_z \hat{k} \hat{k}$ $+ A_z B_x \hat{1} + A_y B_y \hat{1} + A_z B_z \hat{k} \hat{k}$ $= A_x B_x \hat{1} + A_y B_y \hat{1} + A_z B_z \hat{k} \hat{k}$ $= A_x B_x \hat{1} + A_y B_y \hat{1} + A_z B_z \hat{k} \hat{k}$ $= A_x B_x \hat{1} + A_y B_y \hat{1} + A_z B_z \hat{k} \hat{k}$ $\overrightarrow{A} \cdot \overrightarrow{B} = A_x B_x + A_y B_y + A_z B_z$

DOT PRODUCTS ARE COMMUTATIVE: $\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{R} \cdot \overrightarrow{A}$

DOT PRODUCTS ARE ASSOCIATIVE:

$$C(\vec{A} \cdot \vec{B}) = (C\vec{A}) \cdot \vec{B} = \vec{A} \cdot (C\vec{B})$$

DOT PRODUCTS ARE DISTRIBUTIVE:

$$\vec{A} \cdot (\vec{B} + \vec{C}) = (\vec{A} \cdot \vec{B}) + (\vec{A} \cdot \vec{C})$$

NEXT, WE'LL LOOK AT WHY DOT PRODUCTS ARE OFTEN USED.

DOT PRODUCTS CAN BE USED TO FIND THE MAGNITUDE OF A VECTOR.

$$|\vec{A}| = \sqrt{\vec{A} \cdot \vec{A}}$$

WANT PROOF?
$$\vec{A} \cdot \vec{A} = A_{x} A_{x} + A_{y} A_{y} + A_{z} A_{z}$$

$$= A_{x}^{2} + A_{y}^{2} + A_{z}^{2}$$

$$= A_{x}^{2} + A_{y}^{2} + A_{z}^{2}$$

$$= \sqrt{A_{x}^{2} + A_{y}^{2} + A_{z}^{2}} = |\vec{A}|$$

DOT PRODUCTS CAN ALSO BE USED TO FIND THE ANGLE BETWEEN TWO VECTORS:

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$

$$\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|}$$

THE DOT PRODUCT IS USED TO FIND THE PROJECTION OF ONE VECTOR ONTO ANOTHER.

LET'S LOOK AT AN EXAMPLE TO ILLUSTRATE THIS, WHERE TO IS THE PROJECTION OF BON A

YOU CAN THINK OF I AS A VECTOR THE LENGTH OF THE SHADOW THAT E CASTS ON THE LINE OF ACTION OF A.

MORE PRECISELY, IT IS THE RECTANGULAR COMPONENT OF B THAT IS PARALLEL TO A.

THE LENGTH OF & IS SIMPLY:

THIS IS EQUIVALENT TO
$$\overrightarrow{A} \cdot \overrightarrow{B}$$
:

$$\overrightarrow{A} \cdot \overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{B}| \cos \Theta = |\overrightarrow{B}| \cos \Theta = |\overrightarrow{u}|$$

"I (MAGNITUDE OF ANY UNIT VECTOR = 1)

AND I HAS THE SAME DIRECTION AS A, SO

$$\vec{u} = |\vec{u}| \hat{u} = |\vec{u}| \hat{A}$$

$$\vec{u} = (\hat{A} \cdot \vec{B}) \hat{A}$$

FINALLY, WE CAN USE DOT PRODUCTS TO FIND THE COMPONENT OF A VECTOR THAT IS PERPENDICULAR TO ANOTHER. LOOKING AT OUR CURRENT EXAMPLE, \overrightarrow{B}_{1} IS THE COMPONENT OF \overrightarrow{B} THAT IS PERPENDICULAR TO \overrightarrow{A} .

MATHEMATICALLY,
$$\vec{B} = \vec{B}_{\perp} + \vec{u}$$
Solving for \vec{B}_{\perp} ,
$$\vec{B}_{\perp} = \vec{B} - \vec{u}$$

$$= \vec{B} - (\hat{A} \cdot \vec{B})\hat{A}$$